Unsupervised Deep Learning: A Short Review
نویسندگان
چکیده
Deep neural networks with several layers have during the last years become a highly successful and popular research topic in machine learning due to their excellent performance in many benchmark problems and applications. A key idea in deep learning is to not only learn the nonlinear mapping between the inputs and outputs, but also the underlying structure of the data (input) vectors. In this chapter, we first consider problems with training deep networks using backpropagation type algorithms. After this, we consider various structures used in deep learning, including restricted Boltzmann machines, deep belief networks, deep Boltzmann machines, and nonlinear autoencoders. In the later part of this chapter we discuss in more detail the recently developed neural autoregressive distribution estimator (NADE) and its variants.
منابع مشابه
Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملDeep learning in neural networks: An overview
In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links betwe...
متن کاملP-V-L Deep: A Big Data Analytics Solution for Now-casting in Monetary Policy
The development of new technologies has confronted the entire domain of science and industry with issues of big data's scalability as well as its integration with the purpose of forecasting analytics in its life cycle. In predictive analytics, the forecast of near-future and recent past - or in other words, the now-casting - is the continuous study of real-time events and constantly updated whe...
متن کاملA review of unsupervised feature learning and deep learning for time-series modeling
This paper gives a review of the recent developments in deep learning and unsupervised feature learning for time-series problems. While these techniques have shown promise for modeling static data, such as computer vision, applying them to time-series data is gaining increasing attention. This paper overviews the particular challenges present in time-series data and provides a review of the wor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014